Stem Cell Institute Philippines

novel inductions for the future...

Stem Cell Treatment for Degenerative Disc Disease

Degeneration of the intervertebral disc, often called "degenerative disc disease" (DDD) of the spine, is a condition that can be painful and can greatly affect the quality of one's life.


While disc degeneration is a normal part of aging and for most people is not a problem, for certain individuals a degenerated disc can cause severe constant chronic pain. Often, degenerative disc disease can be successfully treated without surgery. One or a combination of treatments such as physical therapy, chiropractic manipulative therapy (CMT) and other chiropractic treatments, osteopathic manipulation, anti-inflammatory medications such as nonsteroidal anti-inflammatory drugs, traction, or spinal injections often provide adequate relief of these troubling symptoms.

Degenerative discs typically show degenerative fibrocartilage and clusters of chondrocytes, suggestive of repair. Inflammation may or may not be present. Histologic examination of disc fragments resected for presumed DDD is routine to exclude malignancy.

Fibrocartilage replaces the gelatinous mucoid material of the nucleus pulposus as the disc changes with age. There may be splits in the annulus fibrosis, permitting herniation of elements of nucleus pulposus. There may also be shrinkage of the nucleus pulposus that produces prolapse of the annulus with secondary osteophyte formation at the margins of the adjacent vertebral body.

The pathologic findings in DDD include protrusion, spondylolysis, and/or subluxation of vertebrae (sponylolisthesis) and spinal stenosis.


Stem Cell Treatment and Degenerative Disc Disease NIH Streaming Database

Related Articles The characteristics of stem cells in human degenerative intervertebral disc. Medicine (Baltimore). 2017 Jun;96(25):e7178 Authors: Liang L, Li X, Li D, Jiang W, Wang H, Chen J, Sun Z, Zhang N, Zhu Y Abstract BACKGROUND: The aim of this study is to identify which possessed the best stem-cell-like characteristics in 3 kinds of cell in human degenerative intervertebral disc: NPSCs (nucleus pulposus-derived stem cells), AFSCs (annulus fibrosus-derived stem cells), or CESCs (cartilage endplate-derived stem cells). METHODS: We separated the disc samples obtained from 15 surgically treated patients with disc degenerative diseases into nucleus pulposus, annulus fibrosus, and cartilage endplate. After cultivating, we used the cell counting kit-8 to analysis the cell activity of 3 kinds of disc tissue-derived stem cell separately; different stem cells were defined with multilineage (osteogenic, chondrogenic, and adipogenic) differentiation. We extracted the total RNA and detected the expression of different lineage differentiation-related genes with the real-time polymerase chain reaction (RT-PCR). RESULTS: Cell morphology of NPSCs, AFSCs, and CESCs did not show significant difference. Cell proliferation capacity of NPSCs and AFSCs was stronger than that of CESCs. The differentiation outcomes showed that osteocyte-like cells were stained red by Alizarin red S, chondrocyte-like cells blue by toluidine blue, and adipocyte-like red by oil red O. The RT-PCR reflected that the expression of different lineage differentiation-related genes of AFSCs was stronger than NPSCs and CESCs. CONCLUSION: In conclusion, we found that the cell morphology was not significantly different among NPSCs, AFSCs, and CESCs. Both differentiation and RT-PCR tests demonstrated that AFSCs had the best stem-cell-like characteristics in the human degenerative intervertebral disc. PMID: 28640098 [PubMed - indexed for MEDLINE]